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ABSTRACT
This paper describes a constraint embedding approach for

handling of local closure constraints in multibody system dynam-
ics. The approach uses spatial operator techniques to eliminate
local-loop constraints from a system to effectively convert it into
a tree-topology system. This conversion to a tree-topologyal-
lows the direct application of the host of available techniques
including mass matrix factorization and inversion to be applied
to the system dynamics. One application is the extension of the
well-known recursiveO(N) forward dynamics for solving the
system dynamics of these systems. The algorithms are espe-
cially applicable to systems where the constraints are confined to
small-subgraphs within the system topology. The paper provides
background on the spatial operator approach, the extensions for
handling embedded constraints, and concludes with examples of
such constraints.

1 INTRODUCTION
There has been a considerable amount of research over the

years on the development of theSpatial Operator Algebrameth-
ods [1, 2] for the analysis of multibody system dynamics. Key
insights that have been developed included analytical techniques
for the factorization and inversion of the mass matrix for tree-
topology systems. From these results followed the well-known
O(N) forward dynamics algorithms for tree-topology multibody
systems [1–3].

Researchers have been able to exploit techniques developed
for tree-topology systems to closed-chain topology systems by

treating the system as consisting of a tree-topology sub-system
together with additional closure constraint. One such example is
the forward dynamics algorithm for closed-chain topology sys-
tems that consists of the following steps [4]:

1. ignoring the closure constraints and using theO(N) algo-
rithm to solve for the “free” unconstrained accelerations for
the tree-topology sub-system;

2. using the tree-topology solution to compute a correction
force that enforces the closure-constraints;

3. correcting the unconstrained accelerations with correction
accelerations resulting from the correction forces.

The correction step (2) requires the computation of the reflected
inertias at the closure nodes, referred to as the operational space
inertia in order to obtain the correction forces.

The above algorithm for closed-chain topologies has some
significant drawbacks when compared with theO(N) algorithms
for tree-topology systems. These include the use of a non-
minimal set of generalized coordinates and velocities, theneed
for a differential-algebraic solver and/or constraint stabilization
technique for propagating the equations of motion, and the multi-
pass algorithm described above. Another major consequence
from the use of a non-minimal set of generalized velocities that
the notion of a mass-matrix is no longer directly applicableto
closed-chain systems, and thus we are unable to take much ad-
vantage of the spatial operator mass-matrix factorizationand in-
version techniques any more. Our goal in this paper is to refor-
mulate the equations of motion for closed-chain systems to over-
come these limitations and recast them into a form that recovers
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all the benefits of a tree-topology formulation. This recasting ex-
tends the direct applicability of the large range spatial operator
results, algorithms and techniques developed for tree-topology
systems to systems with closed-chain topology. This research
is inspired by theRecursive Coordinate Reduction (RCR)algo-
rithm [5] that described a way to directly absorb closure con-
straints into theO(N) forward dynamics algorithms bu adding
additional phantom-bodies to the system.

The reformulation described in this paper is most beneficial
for the class of multibody systems where the closure-constraints
are local, i.e., where the the constraints are confined to small,
connected sub-groups of bodies within the system. Important
examples of such local closure-constraints are four-bar linkages,
geared motors, differential suspensions etc. elements within a
multibody system. This paper shows how one can embed these
closure-constraints directly into the system dynamics andeffec-
tively replace the sub-group of bodies with virtual aggregate
bodies. This step transforms the original closed-chain topol-
ogy system into a tree-topology one with the closure body sub-
groups replaced by aggregated bodies. The transformation to
tree-topology systems allows us to apply all available techniques
for tree-topology systems to the new system’s dynamics includ-
ing the extension of the tree-topologyO(N) forward dynamics
algorithm. The structural impact on the class of recursive dy-
namics algorithms is minimal in that the changes are limitedto
the steps encountered when crossing an aggregated body in the
system. While the results here are quite general, we believethat
this approach is especially effective for “local” loops since the
aggregation step is typically simple for these cases.

We begin with a brief overview of the spatial operator alge-
bra approach to setting up the equations of motion for a multi-
body system, followed by the steps leading to the derivationof
O(N) forward-dynamics algorithms for tree-topology systems.
We then move on to the case of systems with local closure con-
straints and describe the embedding technique. We derive modi-
fications for theO(N) algorithm needed to handle the embedded
constraints. We conclude with specific examples of embedding
local closure-constraints.

2 OVERVIEW OF SPATIAL OPERATORS FOR SERIAL
CHAIN SYSTEMS
The aim of this section is to briefly summarize the essen-

tial ideas underlying spatial operators leading up to the Newton-
Euler Operator FactorizationM(θ) = HφMφ∗H∗ of the ma-
nipulator mass matrix. While this is done here for a serial chain
manipulator, the factorization results apply to more general class
of complex joint-connected mechanical systems, includingtree
configurations with flexible links and joints [6].

Consider a serial manipulator withN rigid links. The links
are numbered in increasing order from tip to base. The outer-
most link is link 1, and the inner-most link is linkN. The overall

number of degrees-of-freedom for the manipulator isN. There
are two joints attached to thekth link. A coordinate frameOk

is attached to the inboard joint, and another frameO
+
k−1 is at-

tached to the outboard joint. FrameOk is also the body frame
for thekth link. Thekth joint connects the(k+ 1)st andkth

links, and its motion is defined as the motion of frameOk with
respect to frameO+

k . When applicable, the free-space motion
of a manipulator is modeled by attaching a 6 degree-of-freedom
joint between the base link and the inertial frame about which the
free-space motion occurs. However, in this paper, without loss
of generality and for the sake of notational simplicity, alljoints
are assumed to be single rotational degree-of-freedom joints with
thekth joint coordinate given byθ(k). Extension to joints with
more rotational and translational degrees-of-freedom is straight-
forward [4].

The transformation operatorφ(k,k− 1) between theOk−1
andOk frames is

φ(k,k−1) =

(

I3 l̃(k,k−1)

0 I3

)

∈R6×6

wherel(k,k−1) is the vector from frameOk to frameO(k−1),
andl̃(k,k−1) ∈R3×3 is the skew–symmetric matrix associated
with the cross-product operation.

The spatial velocity of thekth body frameOk is V(k) =

[ω∗(k),v∗(k)]∗ ∈R6, whereω(k) andv(k) are the angular and
linear velocities ofOk. With h(k) ∈ R3 denoting thekth joint
axis vector,H(k) = [h∗(k),0] ∈ R1×R6 denotes the joint map
matrix for the joint, and the relative spatial velocity across the
kth joint is H∗(k)θ̇(k). The spatial force of interactionf(k)
across thekth joint is f(k)= [N∗(k),F∗(k)]∗ ∈R6, whereN(k)

andF(k) are the moment and force components respectively. The
6×6 spatial inertia matrixM(k) of thekth link in the coordinate
frameOk is

M(k) =

(

J (k) m(k)p̃(k)

−m(k)p̃(k) m(k)I3

)

wherem(k) is the mass,p(k)∈R3 is the vector fromOk to
thekth link center of mass, andJ (k)∈R3×3 is the rotational
inertia of thekth link aboutOk. I3 is the 3×3 unit matrix.
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The recursive Newton–Euler equations of motion are [2,7]































V(N+1)= 0; α(N+1)= 0

for k = N · · ·1

V(k) = φ∗(k+1,k)V(k+1)+H∗(k)θ̇(k)

α(k) = φ∗(k+1,k)α(k+1)+H∗(k)θ̈(k)+a(k)

end loop































f(0)=0

for k = 1· · ·N

f(k) = φ(k,k−1)f(k−1)+M(k)α(k)+b(k)

T(k) = H(k)f(k)

end loop

(1)

whereT(k) is the applied moment at jointk. The nonlinear, ve-
locity dependent termsa(k) andb(k) are respectively the Corio-
lis acceleration and the gyroscopic force terms for thekth link.

The “stacked” notationθ=col
{

θ(k)
}

∈RN is used to sim-

plify the above recursive Newton-Euler equations. This nota-
tion [8] eliminates the argumentsk associated with the individ-
ual links by defining composite vectors, such asθ, which apply
to the entire manipulator system. We define

T = col
{

T(k)
}

∈RN V = col
{

V(k)
}

∈R6N

f= col
{

f(k)
}

∈R6N α= col
{

α(k)
}

∈R6N

a = col
{

a(k)
}

∈R6N b = col
{

b(k)
}

∈R6N

In this notation, the equations of motion are [2,9]:

V = φ∗H∗θ̇; α= φ∗[H∗θ̈+a] (2)

f= φ[Mα+b]; T =Hf= Mθ̈+C (3)

where the mass matrix M(θ) = HφMφH∗;
C(θ, θ̇)=Hφ[Mφ∗a+b] ∈RN is the Coriolis term;

H = diag
{

H(k)
}

∈ RN×6N; M = diag
{

M(k)
}

∈ R6N×6N;

andφ ∈R6N×6N

φ= (I−Eφ)−1 =













I 0 . . . 0

φ(2,1) I . . . 0
...

...
. . .

...

φ(n,1) φ(n,2) . . . I













(4)

with φ(i,j) = φ(i,i−1) · · ·φ(j+1,j) for i > j. The shift opera-
tor Eφ ∈R6N×6N is defined as

Eφ =

















0 0 0 0 0

φ(2,1) 0 . . . 0 0

0 φ(3,2) . . . 0 0
...

...
.. .

...
...

0 0 . . .φ(N,N−1) 0

















(5)

Using spatial operators one can obtain operator factoriza-
tions of the mass matrix and its inverse as follows:

M =HφMφ∗H∗

= [I+HφK]D[I+HφK]∗

[I+HφK]−1 = I−HψK

M−1 = [I−HψK]∗D−1[I−HψK]

(6)

These identifies have been used extensively [1, 2, 8–13], to
develop a variety of spatially recursive algorithms for forward
dynamics, for both rigid and flexible multi-body systems of ar-
bitrarily specified topologies, as well as closed-form analytical
expressions for the inverse of the mass matrix. The spatial op-
eratorsψ, D correspond to a suitably defined spatially recur-
sive Kalman filter, with the spatial operatorK representing the
Kalman gain for this filter. We also refer to these operatorsψ, D
andK as”articulated” quantities, because of their relationship to
the articulated inertias first introduced by [3].

The mass matrix factor[I +HφK] is a square, invertible
matrix and so is its inverse[I−HψK].

3 O(N) FORWARD DYNAMICS

Using the expression for the mass matrix inverse in Eq. (6),
and some additional spatial operator identities, it has been shown
that [1]

θ̈= M−1(T −C) = [I−HψK]∗D−1[I−HψK](T −C) (7)
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This expression can be broken into the following sequence of
intermediate quantities:

z = ψ(KT +Pa+b)

ǫ = T −Hz = T −Hψ(KT +Pa+b)

ν = D−1ǫ = D−1[T −Hψ(KT +Pa+b)]

α = ψ(H∗ν+a) = ψ∗(H∗D−1[T −Hψ(KT +Pa+b)]+a)

θ̈ = ν−K∗α = [I−HψK]∗D−1[T −Hψ(KT

+Pa+b)]−K∗ψ∗a

(8)
These operator expressions can be converted into recursivecom-
putational algorithms without requiring the explicit computation
of the component operators. The resultingO(N) forward dy-
namics procedure is as follows:
















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








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


































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
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
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



























P(0) = 0, z(0) = 0, T(0) = 0, τ(0) = 0

for k = 1· · ·N

ψ(k,k−1) = φ(k,k−1)τ(k−1)

z(k) =ψ(k,k−1)z(k−1)+P(k)a(k)+b(k)

+K(k,k−1)T(k−1)

P(k) =ψ(k,k−1)P(k−1)ψ∗(k,k−1)+M(k)

D(k) =H(k)P(k)H∗(k)

G(k) = P(k)H∗(k)D−1(k)

K(k+1,k) = φ(k+1,k)G(k)

τ(k) = I−G(k)H(k)

ǫ(k) = Ť(k)−H(k)z(k)

ν(k) = D−1(k)ǫ(k)

end loop

(9)






























α(n+1) = 0

for k = N · · ·1

θ̈(k) = ν(k)−K∗(k+1,k)α(k+1)

α(k) =ψ∗(k+1,k)α(k+1)+H∗(k)ν(k)+a(k)

end loop

This algorithm includes the recursive steps for the computa-
tion of theP(.)’s andz(.). The fact that the computational cost
of this algorithm isO(N) follows from the fact that the computa-
tional cost of each of the steps in the above algorithm is of fixed
size, and each of these steps is carried outN times during the
course of the algorithm.

As we see here, this forward dynamics algorithm does not
require the explicit computation of eitherM or C. Indeed it did
not require the explicit computation of any of the spatial opera-

tors either. It illustrates the ease with which the high level opera-
tor level manipulations can be used to establish key identities and
results, and at a later stage when the time for computations arises,
these results can be mapped into highly efficient computational
algorithms.

4 LOCAL CONSTRAINT EMBEDDING
4.1 Constraint Sub-Groups

Let us assume that within the multibody system, we have a a
sub-group of bodies with some closure constraints among them.
One consequence of the constraints is that the effective degrees
of freedom associated with the bodies in this sub-group is less
than the sum total of the hinge degrees of freedom . Examples of
such local loops include constraints associated with geared mo-
tors, 4-bar linkages/wishbone suspensions, differentials etc. The
presence of the local loops implies that the system is no longer a
tree-topology system.

Our first step is to isolate this sub-group in order to clearly
define its internal kinematics/dynamics relationships, aswell as
its coupling to the rest of the system. For the purpose of expo-
sition, we assume that the links have been numbered so that the
indices for the links in the sub-group range from fromi to j with
i > j. Assume that theith link in the sub-group is the child of
the (i+ 1)th link and the(j− 1)th link is the child of thejth

link in the sub-group.
Define the stacked spatial velocities vectorVS =

col
{

V(i), · · ·V(j)
}

, and the stacked generalized velocities vec-

tor θ̇S = col
{

θ̇(i), · · · θ̇(j)
}

. TheVS andθ̇S vectors are sub-

vectors of the fullV andθ̇ vectors corresponding to only the links
in the sub-group. Then we have,

VS = E∗
φS

VS +ES
∗V(i+1)+H∗

Sθ̇S

V(j−1) = φ∗(j,j−1)BS
∗VS +H∗(j−1)θ̇(j−1) (10)

HereE∗
φS

is the block element ofEφ corresponding to just the
bodies in the sub-group.ES andBS are also sub-blocks ofEφ

that denote the coupling of the sub-group to linksi+1 andj−1
respectively. In essence, Eq. (10) is a block-partitioned restate-
ment of the system level velocity relationships. The first equa-
tion defines how the parent body’s velocity couples into the sub-
group while the second one defines how the sub-groups veloc-
ities couple into the outboard bodies. Note that the loop con-
straint imposes internal consistency conditions on the elements
of VS, and these conditions are met by admissibleθ̇S general-
ized velocities that are consistent with the constraints. Due to
the internal-dependency, there are multiple (and equally valid)
options for definingE∗

φS
.
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Continuing on, we now define sub-group rigid body trans-
formation operatorφS analogous to Eq. (4) as

φS
△
= (I−EφS

)−1 (11)

With this we can rewrite the first equation in Eq. (10) as

VS
10
= φ∗

SES
∗V(i+1)+φ∗

SH
∗
Sθ̇S (12)

Note thatφS is a sub-block of the fullφ for the sub-graph links.
In effect, we are partitioning all the spatial operators to create
single block entries to represent the sub-group. Indeed, wecan
now think of the sub-group as anaggregate link with asso-
ciated link transformation matrixφ∗

SES
∗ and joint map matrix

φ∗
SH

∗
S. The aggregate link for the sub-graph then has spatial

velocity defined byVS and its associated generalized velocity
coordinates arėθS. Assuming that the topology of the system
external to the sub-group is a tree, the new system with the ag-
gregate body has been transformed into a form resembling a tree-
topology structure.

4.2 Embedding the sub-group constraints
Having seen how to decompose and isolate sub-groups of

bodies as aggregate bodies we now turn to the subject of han-
dling closure-constraints within these sub-groups. We describe
here the process of embedding these constraints directly into the
dynamics model so that we can complete the transformation to
the simpler tree topology model. However this proxy link is no
longer a regular link, but instead aaggregate link responsible
for appropriately handling the contribution of the sub-group of
links in the system dynamics. Note, that the new model is an
exact replacement for the original model and no approximations
are involved.

Due to the internal constraints within the sub-group, not all
elements oḟθS are independent. Hence, there exists a (configu-
ration dependent) mappingXS such that

θ̇S = XSθ̇RS =⇒ H∗
Sθ̇S =H∗

RSθ̇RS

where H∗
RS

△
= H∗

SXS (13)

In the above,̇θRS denotes the truly independent generalized ve-
locity sub-vector oḟθS. We will later explore how one might go
about computingXS for sub-graphs.

Using Eq. (13) in Eq. (12) we have the following new ve-
locity transformation relationship for the sub-group in terms of

independent generalized velocities:

VS
11,12,13

= φ∗
SES

∗V(i+1)+φ∗
SH

∗
RSθ̇RS

= φ∗
SES

∗V(i+1)+H∗
RSθ̇RS (14)

whereH∗
RS is defined as

H∗
RS

△
= φ∗

SH
∗
RS (15)

With this new-relationship, we can re-express all of the system-
level spatial operators into new versions where the blocks corre-
sponding to aggregate body links are treated as coming from a
single link.

Analogous expressions at the acceleration level are de-
scribed below. First note that

θ̈S = XSθ̈RS + ẊSθ̇RS (16)

Hence the acceleration level expressions take the form:

αS = E∗
φS
αS +ES

∗α(i+1)+H∗
Sθ̈S +aS

=⇒ αS = φ∗
SES

∗α(i+1)+φ∗
SH

∗
Sθ̈S +φ∗

SaS

= φ∗
SES

∗α(i+1)+H∗
RSθ̈RS +φ∗

SaS

+φ∗
SH

∗
SẊSθ̇RS

= φ∗
SES

∗α(i+1)+H∗
RSθ̈RS +a ′

S (17)

where

a ′
S

△
= φ∗

S(aS +H∗
SẊSθ̇RS) (18)

Note that the structure of Eq. (14) and Eq. (17) resemble those of
the velocity and acceleration relations in Eq. (1) for tree-topology
systems. We can continue on to transform the spatial force ex-
pressions as well. For this we will need the spatial inertia term,
M, for the aggregate body.M is simply the sub-block ofMS

corresponding to the bodies sub-group for the aggregate body.
We skip the details since the development is straightforward.

5 FORWARD DYNAMICS WITH CONSTRAINT EM-
BEDDING
With these changes, we once again have a new reduced,

mass matrix for the system corresponding to just the indepen-
dent generalized velocities and forces. The important point to
note is that a consequence of the embedding has been that the
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system and the mass matrix continue to have the familiar struc-
ture for tree-topology systems. As a consequence, we can repeat
the steps leading to the Innovations Factorization and inversion
of the mass matrix for the reduced mass matrix to obtain the cor-
responding operator factors and inverse operator expressions for
the reduced mass matrix. Note however, that the a consequence
of the embedding has been that some of the blocks in the new op-
erators are much larger than normal since they encompass terms
for the full sub-group. The large the sub-groups, the largerare
these block-elements.

With this setup, all of the inverse and forward dynamics re-
sults continue to apply for the new operators defined by embed-
ding the constraints. We now look in more detail at theO(N)
forward dynamics algorithm in Eq. (9) to our new reformulated
system with aggregate links. The articulated body inertia recur-
sive forward dynamics algorithm for the new embedded system
has the form:

P+(j−1) = τ(j−1)P(j−1)

PS = BSφ(j,j−1)P+(j−1)φ∗(j,j−1)BS
∗ +MS

DS =HRSPSH
∗
RS

GS = PSH
∗
RSD−1

S

τS = GSHRS

P+
S = PS −τSPS

P(i+1) = ESφSP+
Sφ

∗
SES

∗ +M(i+1) (19)

Note thatDS can be re-expressed as

DS = XS
∗(HSφSPSφ

∗
SH

∗
S)XS = XS

∗MSXS

where MS
△
= HSφSPSφ

∗
SH

∗
S (20)

The inner termMS has the structure of the mass matrix of the
sub-group’s tree. The one major difference from the true sub-
tree’s mass matrix is that the central body spatial inertia operator
is PS instead of the normalMS term. However, the structural
properties of a tree-topology continue to hold as do resultssuch
as the composite rigid body decomposition, operator-basedmass
matrix factorization and inversion etc.DS is the reduced mass
matrix for the sub-tree projected down down to the independent
degrees of freedom for the sub-tree. In this sub-tree, link(i+1)
is serves as the “root” inertial frame, and the sub-graph bodies di-
rectly attached to this link are independent base-bodies attached
to the inertial frame. Due to the implicit cuts, the sub-group
multi-body system has a tree-topology structure. Also, note that
the mass of the linkj includes the articulated body contribution
from the sub-tree rooted at linkj−1.

The accompanying vector recursions for the articulated body
inertia algorithm in Eq. (9) take the following form for the em-

bedded constraints. First the step from body(j− 1) to theith

aggregate body:

z+(i−1) = z(i−1)+G(i−1)ǫ(i−1)

zS = BSφ(j,j−1)z+(i−1)+bS +PSa ′
S

ǫS = T(i)−HRSzS

νS = D−1
S ǫS (21)

The recursion step from theith body to body(j+ 1) is as fol-
lows:

z+S = zS +GSǫS

z(i+1) = ESφSz+S +b(i+1)+P(i+1)a(i+1)

ǫ(i+1) = T(i+1)−H(i+1)z(i+1)

ν(i+1) = D−1(i+1)ǫ(i+1) (22)

The base-to-tip accelerations sweeps steps also are altered as fol-
lows. First the steps from body(i+1) to theith aggregate body:

α+
S = φ∗

SES
∗α(i+1)

θ̈RS = νS −GS
∗α+

S

αS = α+
S +H∗

RSθ̈RS +a ′
S (23)

The step from theith aggregate body to body(j− 1) is as fol-
lows:

α+(i−1) = BS
∗αS

θ̈(i−1) = ν(i−1)−G∗(i−1)α+(i−1)

α(i−1) = α+(i−1)+H∗(i−1)θ̈(i−1)+a(i−1) (24)

5.1 Alternative form of forward dynamics steps

Defining

PS
△
= φSPSφ

∗
S, (25)
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we can write a slightly rearranged version of Eq. (19) as

P+(j−1) = τ(j−1)P(j−1)

PS = φS

[

BSφ(j,j−1)P+(j−1)φ∗(j,j−1)BS
∗ +MS

]

φ∗
S

(= φSPSφ
∗
S)

DS =HRSPSH
∗
RS

G
S

= PSH
∗
RSD−1

S (= φSGS)

τS = G
S
HRS (= φSτSφS

−1)

P+
S = PS −τSPS (= φSP+

Sφ
∗
S)

P(i+1) = ESP+
SES

∗ +M(i+1) (26)

The above corresponds to the following alternative definitionVS

of the sub-graph’s spatial velocity:

VS = φ∗
SVS or VS

11
= (I−E∗

φS
)VS (27)

Form Eq. (12) it follows then that the velocity equations have the
form

VS = ES
∗V(i+1)+H∗

RSθ̇RS

V(j−1) = φ∗(j,j−1)BS
∗φ∗

SVS +H∗(j−1)θ̇(j−1) (28)

while the corresponding acceleration equations have the form

αS = ES
∗α(i+1)+H∗

Sθ̈S +aS +H∗
SẊSθ̇RS

= ES
∗α(i+1)+H∗

RSθ̈RS +a ′
S (29)

Also define

z
S

△
= φSzS and z+

S

△
= φSz+S (30)

Then from Eq. (21) we have

z
S

= φS

[

BSφ(j,j−1)z+(i−1)+bS +PSa ′
S

]

ǫS = T(i)−HRSz
S

νS = D−1
S ǫS (31)

The recursion step from theith body to body(j+ 1) is now as
follows:

z+
S

= z
S

+G
S
ǫS

z(i+1) = ESz+
S

+b(i+1)+P(i+1)a(i+1) (32)

The base-to-tip accelerations sweeps steps also are altered as fol-
lows. First the steps from body(i+1) to theith aggregate body:

θ̈RS = νS −G
S

∗ES
∗α(i+1) (33)

The step from theith aggregate body to body(j− 1) is as fol-
lows:

α+(i−1) = BS
∗αS

θ̈(i−1) = ν(i−1)−G∗(i−1)α+(i−1)

α(i−1) = α+(i−1)+H∗(i−1)θ̈(i−1)+a(i−1) (34)

5.2 General expression for XS

Now we look at the problem of obtaining expressions for
XS. When the constraint is directly among the joint angles, as
for the geared link/motor case,XS is straightforward to write.
When the constraint is a closure constraint as for the four-bar
linkage case, the constraint can typically be expressed as:

Yθ̇S = [Y1, Y2]

[

θ̇1
S

θ̇RS

]

= 0 (35)

In the above, the above partition is such thatY1 is square and full
rank and so

θ̇1
S = −Y−1

1 Y2θ̇RS =⇒ XS =

[

−Y−1
1 Y2

I

]

(36)

In the above,Y can be a constraint directly on the generalized
velocities, or an indirect constraint on the link spatial velocities.

We next look into computinġXS. required by Eq. (18). First
we note that

Y1Y
−1
1 = I =⇒

dY1

dt
Y−1

1 +Y1
dY−1

1

dt
= 0

=⇒
dY−1

1

dt
= −Y−1

1
dY1

dt
Y−1

1 (37)

Hence, withZ
△
= Y−1

1 Y2,

dZ

dt
=

dY−1
1

dt
Y2 +Y−1

1
dY2

dt

37
= −Y−1

1
dY1

dt
Y−1

1 Y2 +Y−1
1

dY2

dt

= Y−1
1

[

dY2

dt
−

dY1

dt
Z

]
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Thus

ẊS =

[

−Ż

0

]

=

[

Y−1
1

[

Ẏ1Z− Ẏ2
]

0

]

=

[

−Y−1
1 ẎXS

0

]

(38)

Therefore

ẊSθ̇RS =

[

−Y−1
1 ẎXSθ̇RS

0

]

=

[

−Y−1
1 Ẏθ̇S

0

]

(39)

5.3 Computing Ẏ
So far we have made no assumptions about the nature ofY.

We look now at computinġY for the two predominant cases. The
first more straightforward case is where there is an direct (often
linear) algebraic relationship between the constrained general-
ized velocities. For this casėY is simply the product of gradient
of this relationship with respect to to the sub-graph’s generalized
coordinatesθS and theθ̇S sub-graph’s generalized velocities.
Geared joints are an example of this type of constraint wherethe
gear ratio defines the constraint relationship.

The second situation is when the constraint consists of a al-
gebraic constraint on the relative velocities of a pair of physical
points in the sub-graph. Denoting these points aso andp, such a
constraint can be expressed as

0 =A(Vo −Vp) = A(Jo −Jp)θ̇S

=A
[

Jo1 −Jp1, Jo2 −Jp2
]

[

θ̇1
S

θ̇RS

]

(40)

whereJo, Jp denote Jacobians relating the sub-graph’s general-
ized velocities to the spatial velocities at the pointso andp, and
Jo1 etc. represents sub-blocks within these Jacobians. From the
above relationship we can identifyY1 andY2 as

Y1 =A(Jo1 −Jp1) and Y2 =A(Jo2 −Jp2) (41)

Now lets examine how to derive an expressions forẎ1 and Ẏ2.
From the chain rule, these derivatives requireȦ and the time
derivatives of theJo1 etc. blocks. The expression forȦ is usually
straightforward to obtain from the nature of the constraint. So
lets focus on the time derivative of the Jacobian blocks. Case
in point, theith column ofJo1 is of the formφ∗(Oi,o)H∗(i),
whereOi denotes the frame at theith hinge inθ̇S with H∗(i)
the corresponding joint map matrix at the hinge. The derivative
involves the relative linear and angular velocity ofo with respect
to to Oi and is an easy expression to derive.

6 EXAMPLES OF CONSTRAINT EMBEDDING

Geared motors

For geared motors, we have the motor mounted on an in-
board link driving the outer link that creates a closure-loop be-
tween the 3 bodies. For this sub-group we have:

θ̇S = [θmtr(k), θlnk(k)]
∗ , θ̇RS = θlnk(k)

XS = [µG(k), 1]∗, BS = BG(j), H∗
RS =HG

∗(i)

EφS = 0, φS = I, ES = AG(i+1,i) (42)

For this case, sinceφS = I, we can stop at Eq. (19) since the fol-
lowing equations become degenerately trivial. Using the defini-
tions in Eq. (42) it can be verified that the expressions we obtain
agree with those from earlier in this chapter.

Planar 4-bar linkage system (terminal cut)

Assume that the linka andc are directly connected to link
(i+1). Link b is the child of linka and its other end is connected
to the end of linkc through a hinge. Linkj−1 is connected via
a hinge to linkb. The sub-graph consists of linksa, b andc.
We make a cut at the hinge joining linksb andc to convert the
sub-graph into a tree-topology system.

ES = [0, 0, φ(i+1,a)], EφS
=







0 0 0

φ(b,c) 0 0
0 φ(a,b) 0







φS =







I 0 0
φ(b,c) I 0

φ(a,c) φ(a,b) I







H∗
RS = [X(c), X(b), H(a)]∗, BS

∗ = [0, I, 0] (43)

In the above,X(c) andX(b) are the effective joint map matrices
for the b andc matrices that satisfy the closed-loop wishbone
constraint.

Planar 4-bar linkage system (internal cut)

Assume that the linka andc are directly connected to link
(i+1). Link b is the child of linka and its other end is connected
to the end of linkc through a hinge. Linkj−1 is connected via
a hinge to linkb. The sub-graph consists of linksa, b andc.
We make a cut at the hinge joining linksb andc to convert the
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sub-graph into a tree-topology system.

ES = [φ(i+1,c), 0, φ(i+1,a)], EφS =







0 0 0
0 0 0

0 φ(a,b) 0







φS =







I 0 0
0 I 0

0 φ(a,b) I






, H∗

RS = [X(c), X(b), H(a)]∗

BS
∗ = [0, I, , 0] (44)

In the above,X(c) andX(b) are the effective joint map matrices
for the b andc matrices that satisfy the closed-loop wishbone
constraint.

7 CONCLUDING REMARKS
This paper has described a constraint embedding approach

for the handling of local closure constraints in multibody sys-
tem dynamics. The approach uses spatial operator techniques to
eliminate local-loop constraints from the system and effectively
convert the system into tree-topology systems. Once converted,
the host of techniques available - includingO(N) forward dy-
namics algorithms - are shown to be applicable to such systems.
Future work will explore the implications of the sub-group def-
inition when the system has a density of closely-coupled con-
straints. Another issue to be explored in more detail is the han-
dling of singular configurations and consequent changes to the
ranks of the constraint matrices.
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